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Abstract. It is shown that for a collection of equal-sized bubbles in a viscous incompressible fluid, that is subjected 
to a spatially harmonic temperature field, a solution of the steady Stokes equations exists for which the flow 
velocity everywhere is irrotational and proportional to the local temperature gradient. Moreover, the bubbles 
remain at rest. As a consequence, for a suspension of equal-sized bubbles, which on average is spatially uniform, 
the effective thermocapillary mobility tensor is identical to the effective thermal conductivity tensor, apart from a 
simple proportionality factor. Analogous results hold for the electrophoretic motion of equal-sized particles in an 
electrolyte solution, provided the Debye length of the solution is much less than the particle radius. 

1. Introduction 

A bubble in a liquid with a temperature gradient will move in the direction of higher tempera- 
ture due to the temperature dependence of the surface tension [1]. The motion of a collection 
of bubbles is complicated, because then both the temperature field and the flow field are 
intricate functions of position. It has been shown by Acrivos, Jeffrey, and Saville [2] that 
for a collection of equal-sized bubbles placed in a uniform temperature gradient a significant 
simplification occurs. In this case the local flow velocity differs from the gradient of the tem- 
perature perturbation only by a constant factor. Hence the flow is irrotational, and the pressure 
perturbation vanishes. Each bubble moves as if it were by itself in the fluid. This remarkable 
theorem was derived as a generalization of explicit results for the case of two bubbles [3, 4, 
5, 6] Analogous results hold for the electrophoretic motion of equal-sized spheres in the limit 
of thin double layers. In this limit the two problems are mathematically identical [2]. 

In the following we generalize the theorem of Acrivos et al. [2]. We show that for a 
collection of equal-sized bubbles placed in a temperature field which is a solution of Laplace's 
equation a solution of the Stokes equations exists which satisfies the boundary conditions 
at the surface of the bubbles, for which the flow velocity differs from the local temperature 
gradient only by a constant factor, and for which all bubbles remain at rest. For a uniform 
imposed temperature gradient the solution is related to the situation studied by Acrivos et al. 
[2] by a Galilean transformation. 

The theorem we derive is important, since it allows a simple discussion of the macroscopic 
transport properties of a suspension of equal-sized bubbles. On a macroscopic length scale 
the variation of the average temperature field may be calculated from an analogue with elec- 
trostatics, the temperature playing the role of electrostatic potential, and the effective thermal 
conductivity tensor replacing the dielectric tensor. It follows from Maxwell's theory that the 
average field depends significantly on the shape of the macroscopic sample. Nonetheless, the 
effective dielectric tensor is a well-defined transport property, independent of sample shape 

* See note on page 304 
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and determined by the local microgeometry [7]. Our theorem shows that the effective ther- 
mocapillary mobility tensor differs from the effective thermal conductivity tensor only by a 
simple factor. 

2. Single bubble 

We consider first a single spherical bubble of radius a, centered at the origin, and immersed in 
a viscous incompressible fluid with shear viscosity r/and thermal conductivity A. The surface 
tension 3' of the bubble is assumed so large that the bubble is kept spherical at all times. 
The temperature field T( r )  satisfies Laplace's equation V2T = 0 both inside and outside the 
bubble. Since the thermal conductivity inside the bubble is negligibly small, the boundary 
condition OT/Or = 0 at r = a + applies. The temperature is continuous at the bubble surface. 
These conditions define a unique temperature field, once the behavior at infinity is specified. 
We consider the imposed temperature field 

To(r) = ream(O,  ~), (2.1) 

in spherical coordinates (r, O, ~o), with the spherical harmonic [8, p 24] 

~'em(O, ~o) = (-1)mp~n(cos O)e imp. (2.2) 

To facilitate comparison with earlier work [9], we omit the normalization factor, as indicated 
by the hat. The complete temperature field is 

g a2e+l 
T( r )  = r e + g +-----1 r e+------T IYem(0'(P)' r > a, 

2e + 1 re ~ "0 
= e + i  r < a. (2.3) 

The variation of the temperature field on the bubble surface causes a motion of the outside 
fluid via the thermocapillary effect associated with the temperature dependence of the surface 
tension 7. The velocity field v (r) and the pressure field p(r) of the outer fluid are assumed to 
satisfy the Stokes equations 

~V2V -- Vp = 0, V .  v = 0. (2.4) 

The first equation may be expressed as V -  a = 0, where er is the stress tensor with compo- 
nents 

(ovo 0v ) (2.5) 
Since the bubble is kept spherical, the velocity field satisfies the kinematic condition 

Vr [a+ = Ur, (2.6) 

where U is the translational velocity of the bubble. In linear approximation the surface tension 
varies along the surface as 

7(0, cp) = 70 + 0'7 [T(a, O, ~o) - Teq], (2.7) 
O7" 
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where 7o(Teq) is the surface tension at the equilibrium temperature Tea. The normal-tangential 
components of the stress tensor satisfy the boundary condition [10, p 302] 

07 
a tl + = aTVtTI='  (2 .8 )  

where Vt denotes the tangential derivative. The conditions expressed by Eqs. (2.6) and (2.8) 
suffice to determine the velocity and pressure fields. Imposing U = 0 we find 

vr (r )  = --~a 2e-1 [2e(2e-  1)(2e + 1)V[mo(r ) ] g + 1 + (2/~ + 1)2(2g + 3)a2V-~m2(r) , 

, 2g(2g-  1) a 2e-I 
pT(r) = --UI - ~  ~ re+l Yem(O, qo), r > a, (2.9) 

with velocity fields V[m~(r ) in standard notation [9], and with coefficient 

l a 0 7  
- 2 r/0T" (2.10) 

For g = 1 the velocity field V-{mo(r ) decays with distance as 1/r. This shows that for 
g = 1, in order to keep the bubble stationary, an external force must be applied. For uniform 
temperature gradient 9T, corresponding to 

To(r) = g T . r ,  (2.11) 

this force is given by 

ET = --41r~la~9 T. (2.12) 

For free motion the bubble moves with velocity 

U = {gT, (2.13) 

and the velocity and pressure fields are 

1 a 3 . ^^ 
v(r)  = ~-~(3rr  -- 1). U, p(r) = 0. (2.14) 

This shows that the effect of a uniform temperature gradient on a free bubble is to induce a 
stresslet, and a translational velocity, but no force. 

Since for g > 1 the velocity U vanishes, Eq. (2.13) may be generalized to [5, 11] 

U = #tc(1)(VTo)o, #te(1) = {, (2.15) 

where #te(l) is the single-bubble thermocapillary mobility. We have chosen signs such that 
is positive for 07 /0T negative. 

3. I m p o s e d  f l o w  

Next we consider the bubble in the absence of a temperature field, but in the presence of an 
imposed flow field. Let the imposed flow field be 

= po(r) = o, (3.1) 
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again in the notation used previously [9]. The imposed flow is a potential flow, since 

V m0(r) = V(rt m(0, (3 .2)  

The modification, due to the presence of the bubble, is [9, 12] 

vv ( r )  = 2 e ( 2 g -  1)(2e + 1)a2e_lv_ tr ~ 
g + 1 ernO~ ), 

2e(2e - 1) a ze-1 ^ 
pv(r)  = -rl e + 1 re+l Yem(O, ~o), r > a. (3.3) 

For g = 1 the bubble does not move, which requires an applied force. 
By comparison with Eq. (2.9) we see that superposition of the two imposed fields 

To(r) = rl?~m(~'), vo(r) = -~VT0(r ) ,  (3.4) 

leads to the flow perturbation 

VT(r) -- ~vv( r )  = --~a 2l+1 (2g + 1)2(2g + 3)V~raz(r), 

pT(r) -- ~pv(r) = 0, r > a. (3.5) 

This is a surprisingly simple result. The pressure perturbation vanishes, and the velocity 
perturbation can be derived from a potential, since [9] 

V-[m2(r) = (g + 1)(2g + 1)2(2g + 3) V ~m(0,~o) • (3.6) 

A comparison with Eq. (2.3) shows that the flow perturbation is related to the temperature 
perturbation for r > a by 

v ' ( r )  = - ~ 7 T ' ( r ) ,  r > a. (3.7) 

Hence these fields are related in the same way as the incident fields in Eq. (3.4). 
More generally, if an arbitrary imposed harmonic temperature field To (r) is combined with 

the imposed flow 

vo(r) = -~VTo( r ) ,  po(r) = 0, (3.8) 

then the complete temperature and flow fields can be expressed as 

T(r)  = To(r) + T'(r) ,  v(r)  = vo(r) + vt(r) (3.9) 

with perturbed fields T~(r) and v~(r) that are related as in Eq. (3.7), and with vanishing 
pressure field. 

We consider the case g = 1 separately. The imposed flow V+mo(r) is spatially uniform. In 
the derivation of Eq. (3.3) it was assumed that the bubble center is kept fixed at the origin. It 
is evident from Eq. (3.5) that the combination 

(3.10) T o ( r )  = g T  " r ,  vO = - - ~ g T  

leads to a bubble at rest without exertion of force. The resulting flow perturbation 

1 a 3 ^ ^  
v ' ( , - )  : - 1).gr (3.11) 
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is dipolar, and is identical to that in Eq. (2.14), as one would expect from Galilean invari- 
a n c e .  

4. Many bubbles 

The results derived in the preceding section can be extended straightforwardly to the case 
of many bubbles. Thus we consider N spherical bubbles of radius a suspended in arbitrary 
configuration in an infinite viscous incompressible fluid. It is essential to consider identical 
bubbles, since the coefficient ~, as given by Eq. (2.10), is proportional to the bubble radius. 
We consider again an imposed harmonic temperature field T0(r), and combine this with the 
incident flow vo(r)  = -~VT0(r) ,  p0(r) = 0, as in Eq. (3.8). We denote the joint bubble 
volume as V0, and the complementary space as V. The complete temperature and flow fields 
can be expressed as in Eq. (3.9). The temperature perturbation T'  (r) and the flow perturbation 
v'(e) in the complementary space V are related as in Eq. (3.7), 

v'(r) = - ~ V T ' ( r ) ,  r E V. (4.1) 

This follows immediately from a multiple scattering analysis by use of the single bubble results 
of Sec. 3. The pressure perturbation vanishes, and every bubble is at rest and experiences no 
force. 

The solution found above is a generalization of that of Acrivos el al. [2]. These authors 
considered a situation, where the temperature gradient at infinity is uniform, and the flow field 
vanishes at infinity. In that case the bubbles move with the single bubble velocity given by Eq. 
(2.13). After a Galilei transformation to a system where the bubbles are at rest, the solution is 
a special case in the class considered above. 

The present formulation allows a transparent discussion of the relation between two macro- 
scopic transport coefficients characterizing the average flow of heat and the average motion of 
bubbles in a suspension. Thus we consider a large number N of identical bubbles, distributed 
approximately uniformly in a volume [2 of simple shape, and immersed in infinite fluid. At 
first we omit the thermocapillary effect, and study the pure thermal conductivity problem. 
The effective thermal conductivity Aeff, or, more generally, the effective thermal conductivity 
tensor )%ff in case the suspension is microscopically anisotropic, is defined as the tensor of 
coefficients in the macroscopic relation 

< j > =  -Aeff" < V T  >, (4.2) 

where j is the thermal current density 

j ( r )  = - ) , V T  for r E V ,  
= 0 for r E V0, (4.3) 

and the averages in Eq. (4.2) are over the probability distribution of bubble configurations. 
In the thermodynamic limit N --+ ~ ,  ft --+ cx~ at constant density n = N/f~ the tensor )%ff 
takes a well-defined value independent of the shape of ~2, and may be expressed as a sum 
of absolutely convergent integrals over the set of microscopic distribution functions [7, 13]. 
Accurate values have been determined for a hard sphere distribution by computer simulation 
[14]. 

Similarly, the effective thermocapillary mobility tensor/~te~ f is defined by 

tc < U > - < v > = / Z e f  f . < V T > .  (4.4) 
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For the situations considered above the mean bubble velocity vanishes, < U > =  O, and the 
mean flow velocity is given by 

< v > =  ~ < j > .  (4.5) 

Hence we find the exact relation 

t o ,  tO,l) ,Xeff/,X. /~eff/# I, = (4.6) 

A similar relation was derived by Acrivos et  al. [2], but their equation defining the mobility 
tensor differs from Eq. (4.4). Note that in general the mean temperature gradient < V T  > 
differs from the applied uniform gradient VT0 = g T .  Finally, we remark that the electrostatic 
version of  Lorentz'  reciprocity theorem [15, 16, 17] may be used to show that the effective 
thermal conductivity tensor )%ff is symmetric. 

5. Discussion 

The theorem derived above applies only to the rather special case of a collection of  equal- 
sized bubbles. Nonetheless it is of  theoretical importance, since it provides a benchmark in 
the study of  the more complicated situation of bubbles of different size, or more generally 
of  a polydisperse suspension of fluid droplets with nonvanishing thermal conductivity and 
viscosity. 

It has been shown by Acrivos et  al. [2] that the problem of particles suspended in an 
electrolyte solution is mathematically identical to the thermocapillary problem considered 
above, provided the Debye length of the solution is much smaller than the particle radius. 
Hence for a set of  equal-sized particles the derivation can be repeated with appropriate change 
of  notation. 

Note 

* While this article was in print I was informed by Prof. A. Acrivos that the theorem derived above is contained in 
the paper Y. Wang, R. Mauri, and A. Acrivos, Thermocapillary migration of a bidisperse suspension of bubbles. J. 
Fluid Mech. 261 (1994) 47-64. 
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